
Continuous Time Systems

The Differential Equation

A linear, time-invariant system in the continuous time domain can be described by a linear, constant-
coefficient differential equation:

a0y(t) + a1
d

dt
y(t) + a2

d2

dt2
y(t) + . . . = b0x(t) + b1

d

dt
x(t) + b2

d2

dt2
x(t) + . . . (1)

where x(t) is a known function of time that represents the input signal and y(t) is the function that we try
to find, representing the output signal. In parlance of differential equations, the whole right hand side -
that is: the weighted sum of x(t) and its derivatives - can be regarded as a disturbance function. Would it
be identically zero, we would be dealing with a homogeneous differential equation for y(t) and the actual
solution function would be determined by initial or boundary values. We simplify the notation by omitting
the independent variable t and denote derivatives with respect to t with dots, as it is common in physics
- so:

a0y + a1ẏ + a2ÿ + . . . = b0x+ b1ẋ+ b2ẍ+ . . . (2)

The Solution for a Special Input Signal

Let’s assume that our input signal x(t) is given by an exponentially enveloped sinusoid. The function has
the form of a complex exponential function: x(t) = est where s is some complex parameter [...a bit sloppy
- how do we go from the real enveloped sinusoid to the complex?]. For the function and the derivatives
with respect to t, we have:

x(t) = est, ẋ(t) = sest, ẍ(t) = s2est, . . . (3)

Denoting the real part of s as σ and the imaginary part as ω, such that s = σ + jω, we see that
x(t) = e(σ+jω)t = eσtejωt, which represents spiraling phasor in the complex plane. The speed of the
rotation is determined by ω and the spiral grows outward for increasing time t when σ > 0, shrinks inward
when σ < 0 and reduces to a circular motion (around the unit circle) when σ = 0. With this special choice
of x(t), the differential equation becomes:

a0y(t) + a1ẏ(t) + a2ÿ(t) + . . . = b0e
st + b1se

st + b2s
2est + . . . (4)

Still we are trying to find the function y(t) that is the solution to our differential equation. Finding a
solution to a differential equation means to find a function y(t) that can be plugged into the differential
equation and turns it into an identity when all the derivatives are evaluated. Sometimes one can find a
solution by making a guess about the form of the function containing one or more parameters, plug it in,
evaluate the derivatives and solve for the parameters. If parameters can be found that turn the differential
equation into an identity, the particular function with the right values for the parameters will then indeed
be a solution. Here, we will make the guess that the solution is of the form: y(t) = Hest, where H is a
our free parameter that represents a (possibly complex) constant. Plugging the assumed solution into the
differential equation yields:

a0He
st + a1

d

dt
Hest + a2

d2

dt2
Hest + . . . = b0e

st + b1se
st + b2s

2est + . . . (5)

1



evaluate the derivatives:

a0He
st + a1Hse

st + a2Hs
2est + . . . = b0e

st + b1se
st + b2s

2est + . . . (6)

solve for the parameter H:

H =
b0e

st + b1se
st + b2s

2est + . . .

a0est + a1sest + a2s2est + . . .
(7)

and removing the common factor est in the numerator and denominator:

H =
b0 + b1s+ b2s

2 + . . .

a0 + a1s+ a2s2 + . . .
(8)

So, we now have an expression for H such that the function y(t) = Hest is a solution to the differential
equation when the input signal was given by x(t) = est. To reassure ourselves, that this so found function
y(t) is indeed a solution, we plug it back into the differential equation (in the form of Eq. 6) which gives:

b0 + b1s+ b2s
2 + . . .

a0 + a1s+ a2s2 + . . .
(a0e

st + a1se
st + a2s

2est + . . .) = b0e
st + b1se

st + b2s
2est + . . . (9)

so:

(b0+b1s+b2s
2+ . . .)(a0e

st+a1se
st+a2s

2est+ . . .) = (a0+a1s+a2s
2+ . . .)(b0e

st+b1se
st+b2s

2est+ . . .) (10)

using sum notation: (
M∑
m=0

bms
m

)(
N∑
n=0

ans
nest

)
=

(
N∑
n=0

ans
n

)(
M∑
m=0

bms
mest

)
(11)

where N,M are the numbers of a, b coefficients respectively. To evaluate the product of two sums, the
general identity (

N∑
n=1

an

)(
M∑
m=1

bm

)
=

N∑
n=1

M∑
m=1

anbm (12)

can be used, which, in this case, leads to the equation:

M∑
m=1

N∑
n=1

bms
mans

nest =
N∑
n=1

M∑
m=1

ans
nbms

mest (13)

simplfying and re-arranging a bit:

M∑
m=1

N∑
n=1

ans
nbms

m =
N∑
n=1

M∑
m=1

ans
nbms

m (14)

which now differ only in the order of inner and outer summation - which makes no difference, hence the
identity of left and right hand sides is shown. Identity of left and right hand sides, in turn, proves that
our tentative solution y(t) = Hest is indeed a solution. ...which was actually already clear by virtue of the
construction of H, but this proof should serve as reassurance.
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The Transfer Function

In the preceding section, we saw that for any input signal x(t) = est with given complex parameter s,
we can compute a complex value H that, when multiplied with our input signal x(t), gives our output
signal y(t). This means that the output signal can be found from the input signal by scaling it with a
complex factor - which amounts to a scaling of the amplitude together with a shift of the sinusoid’s phase.
The complex exponential function est is said to be an eigenfunction of the system, because the output
function can be found by mere multiplication of the input function with a (complex) scalar. The complex
scalar factor H is called the eigenvalue [check this] that is associated with this particular eigenfunction
(each choice of s gives another eigenfunction, and because s = σ + jω, s has itself already two degrees of
freedom, so we basically have a two-parametric family of eigenfunctions [...check this]). The corresponding
eigenvalue H is a function of s. When we regard H as a function of s, we write H(s) and call it a transfer
function, because it ”transfers” our input signal x(t) = est to the corresponding output signal y(t) = Hest.
In the preceding section we have already seen, that this transfer function is a ratio of two polynomials in
s:

H(s) =
b0 + b1s+ b2s

2 + . . .

a0 + a1s+ a2s2 + . . .
(15)

Of course, H it is also a function of the coefficients an, bm, but we considered these as fixed and given.
However, any particular choice of the set of coefficients an, bm leads to another transfer function.

Poles and Zeros

The numerator and denominator of the transfer function are both polynomials in s. The fundamental
theorem of algebra tell us that every polynomial of order N has exactly N roots - that is, input values for
which the output value of the polynomial becomes zero. These roots may be real or complex and some
of them may occur multiple times. For values of s for which the numerator becomes zero, the value of
the whole transfer function will also become zero - unless there is also a root in the denominator at the
same value s. Therefore, these roots of the numerator are consequently called the ”zeros” of our transfer
function. If - on the other hand - the denominator becomes zero for some value of s, we formally have
a division by zero. Assuming the numerator is nonzero at this s, we may consider the limit when the
denominator approaches the root. This will give - in the limit - an infinite value for the transfer function.
This is why these denominator roots are called the ”poles” of the transfer function - the function looks
rather like a membrane attached to a pole of infinite height in the vicinity of these points. When there
are roots in the numerator and denominator at the same value of s, we will formally have a term like
zero-divided-by-zero. In this case, we must again consider the limit when numerator and denominator
both approach zero. This may yield a finite value in cases where denominator and numerator approach
zero at the same rate which will be the case when the numerator’s and denominator’s root have the same
multiplicity. In this case, the pole and zero cancel each other to give some finite value of the transfer
function.

The Frequency Response

So far, we did not put any restrictions on the choice of s - it could be any complex number. We now
impose the restriction that s should be purely imaginary - the real part is zero. So we have: s = σ + jω
with σ = 0. Setting the real part to zero amounts to evaluating the transfer function along the imaginary
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axis in the s-plane. Along this axis, we have:

H(ω) = H(s)|s=jω =
b0 + b1 · (jω) + b2 · (jω)2 + . . .

a0 + a1 · (jω) + a2 · (jω)2 + . . .
(16)

Evaluating the transfer function at the imaginary axis means that the envelope of the sinusoid given by
eσ reduces to e0 = 1 such that the particular eigenfunction is now simply an undamped complex sinusoid.
Thus, H(ω) represents the complex factor by which an incoming complex sinusoid with given radian
frequency ω must be scaled to give the output of the system. We may interpret the value H(ω) as the
complex frequency response of the system at the radian frequency ω.

Real an Imaginary Parts

Let’s define the numerator as N(ω) and the denominator as D(ω) as follows:

N(ω) = b0 + b1 · (jω) + b2 · (jω)2 + . . . , D(ω) = a0 + a1 · (jω) + a2 · (jω)2 + . . . (17)

such that:

H(ω) =
N(ω)

D(ω)
(18)

Our goal is now to find an expression for real and imaginary part of N(ω) and N(ω). Writing N(ω) and
D(ω) as:

N(ω) = b0j
0ω0 + b1j

1ω1 + b2j
2ω2 + b3j

3ω3 + . . .

D(ω) = a0j
0ω0 + a1j

1ω1 + a2j
2ω2 + a3j

3ω3 + . . .
(19)

and recognizing that:

jn =


1 n mod 4 = 0

j n mod 4 = 1

−1 n mod 4 = 2

−j n mod 4 = 3

(20)

Assuming the a, b coefficients to be real, we deduce that the real and imaginary parts of N(ω) and D(ω)
(denoted as Nr(ω), Ni(ω) and Dr(ω), Di(ω) respectively) can be expressed as:

Nr(ω) = b0ω
0 − b2ω2 + b4ω

4 − b6ω6 + . . .

Ni(ω) = b1ω
1 − b3ω3 + b5ω

5 − b7ω7 + . . .

Dr(ω) = a0ω
0 − a2ω2 + a4ω

4 − a6ω6 + . . .

Di(ω) = a1ω
1 − a3ω3 + a5ω

5 − a7ω7 + . . .

(21)

We can see that the real parts only contain even powers of ω and the imaginary parts only contain odd
powers of ω which means that Nr, Dr have even symmetry and Ni, Di have odd symmetry. Denoting the
real and imaginary parts of the full transfer function as Hr(ω), Hi(ω), we can further deduce that these
have even and odd symmetry, too. This can be shown like this:

H = Hr + jHi =
Nr + jNi

Dr + jDi
(22)
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where Hr, Hi are given by the rules of complex division:

Hr =
NrDr +NiDi

D2
r +D2

i

=
even · even+ odd · odd

even
= even

Hi =
NiDr −NrDi

D2
r +D2

i

=
odd · even− even · odd

even
= odd

(23)

Magnitude Response

The value H(ω) is a complex number which we may express either in cartesian coordinates such that
H = Hr + jHi or in polar coordinates such that H = |H|ejϕ. The absolute value (or radius) |H| of this
complex number is the amplitude scaling factor for an incoming sinusoid - the outgoing sinusoid will have
an amplitude of |H| times the amplitude of the incoming sinusoid. We denote the magnitude response
function as:

|H(ω)| =
√

(Hr(ω))2 + (Hi(ω))2 (24)

Squaring any function yields an even function, adding two even functions gives also an even function and
taking the square root from an even function gives again an even function. So we see that the magnitude
response possesses even symmetry, too.

Phase Response

The angle ϕ, is given by:
ϕ(ω) = atan2(Hi(ω), Hr(ω)) (25)

This angle represents a radian phase shift that is added to the phase of an incoming sinusoid. This angle
is not unique - adding arbitrary (possibly negative) multiples of 2π to ϕ(ω) will give the exact same
output sinusoid. This may seem counterintuitive at first, but remember that sinusoids are formally signals
with infinite extent to plus/minus infinity, and the frequency response, by its nature, considers only these
stationary, infinite-extent signals as inputs. By convention, we will use the value which is in the interval
[−π, π]. We’ll turn to finite-extent inputs signals later when we consider the transient response. The
atan2(y, x) is a two-argument version of the arctangent function that returns the angle of a vector (x, y)T

in a two dimensional x, y coordinate system, measured counterclockwise with respect to the positive x-axis.
The function may be defined as:

atan2(y, x) =



arctan(y/x) x > 0

arctan(y/x) + π x < 0, y ≥ 0

arctan(y/x)− π x < 0, y < 0

+π/2 x = 0, y > 0

−π/2 x = 0, y < 0

undefined x = 0, y = 0

(26)

where the last (undefined) case basically says, that a vector with zero x and y components can be assigned
to any angle because the length (radius) is zero anyway. However, for convenience, one sometimes defines
atan2(0, 0) = 0 which seems the most natural choice for the angle of a zero-vector - this is also what most
implementations of atan2 in programming languages return. To see the symmetry in the phase response,
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we now must consider the cases separately. The argument is a bit convoluted because of the two-argument
nature of atan2 whereas ϕ(ω) is really only a single argument function. I’ll outline it for the first two cases:
To get into the first case, our ω is such that Hr(ω) happens to be positive. In this case, Hr(−ω) will also
be positive because of the even symmetry of Hr(ω), so we end up in the same branch for both, ω and −ω.
In this branch, we have ϕ = arctan(Hi/Hr). Dividing an odd function by an even function yields an odd
function, so the argument of the arctangent is an odd function. The arctangent itself is an odd function of
its argument and composing an odd function with another odd function gives again an odd function. So,
for this particular choice of ω, we see that ϕ(ω) = −ϕ(−ω) - we have odd symmetry. Let’s now consider
the case where our ω is such that Hr < 0 and Hi > 0. For ϕ(ω) we end up in the second branch, so we
have ϕ(ω) = arctan(Hi/Hr) +π. The symmetries of Hr and Hi now dictate that for ϕ(−ω) we will end up
in the third branch such that ϕ(−ω) = arctan(Hi/Hr)− π. The arctan itself is an odd function as before,
and we add π to it on the positive ω-axis and subtract π on the negative ω-axis - with the net result that
the function ϕ(ω) has again odd symmetry. The argument is the same (but the other way around) for ω
such that Hr < 0 and Hi < 0. Bottom line: even though the atan2 function complicates matters, we can
still see that ϕ(ω) possesses odd symmetry with respect to ω.

Phase Unwrapping It has been mentioned that the phase angle ϕ of the frequency response is only be
made unique by convention - among the possible values, we choose that particular value of ϕ which is in
the interval [−π, π]. Wrapping the phase angle into this interval may lead to artificial discontinuities in the
phase response. We may define an unwrapped phase response ϕu(ω) by adding an appropriate multiple of
2π to ϕ(ω) such that ϕu(ω) becomes a continuous function of ω. [how do we find the appropriate multiple
of 2π?]

Phase Delay and Group Delay

Phase Delay The phase response, viewed as phase offset that is added to an incoming sinusoid can
be normalized by the radian frequency of the sinusoid to give an actual time delay (in seconds) that the
incoming sinusoid experiences when it goes through the system. This time delay is called the phase delay,
denoted by τp and given by:

τp(ω) = −ϕu(ω)

ω
(27)

The minus sign has been included into the definition in order to have positive phase-delay values. [check
this]

Putting it all together

Let’s assume that our input signal is a sinusoid at radian frequency ω, having a peak amplitude of Ax and
a phase-shift of φx:

x(t) = Ax sin(ωt+ φx) (28)

then, our output signal will also be a sinusoid with the same radian frequency ω but possibly different
amplitude and phase such that:

y(t) = Ay sin(ωt+ φy) (29)

where
Ay = Ax|H(ω)|, φy = φx + ϕ(ω) (30)
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Alternatively, we may express y(t) using a time delay instead of the phase response value:

y(t) = Ay sin(ω(t− τ)), where τ = τp(ω) (31)

[check this]
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